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ABSTRACT

This paper is concerned with the implementation of a three-dimensional unstructured-

grid Euler-solver on massively parallel distributed-memory computer architectures. The goal

is to minimize solution time by achieving high computational rates with a numerically effi-

cient algorithm. An unstructured multigrid algorithm with an edge-based data-structure has
been adopted, and a number of optimizations have been devised and implemented in order

to accelerate the parallel computational rates. The implementation is carried out by creating

a set of software tools, which provide an interface between the parallelization issues and the

sequential code, while providing a basis for future automatic run-time compilation support.

Large practical unstructured grid problems are solved on the Intel iPSC/860 hypercube and

Intel Touchstone Delta machine. The quantitative effect of the various optimizations are

demonstrated, and we show that the combined effect of these optimizations leads to roughly

a factor of three performance improvement. The overall solution efficiency is compared with

that obtained on the CRAY-YMP vector supercomputer.

'Research was supported by the National Aeronautics and Space Administration under NASA Contract
No. NAS1-18605 while the authors were in residence at the Institute for Computer Applications in Science
and Engineering (ICASE), NASA Langley Research Center, Hampton, VA 23665.



1. INTRODUCTION

The relatively rapid growth in microprocessor technology over the last decade has lead
to the development of massively parallel hardware capable of solving large computational

problems. Given the relatively slow increases in large mainframe supercomputer capabilities,

it is now generally acknowledged that the most feasible and economical means of solving

extremely large computational problems in the future will be with highly parallel distributed

memory architectures. While such hardware already exists and is rapidly progressing, the

software required to solve large problems in parallel has proved to be a major stumbling

block. The software problems are twofold. First, an efficient and inherently parallelizable

algorithm must be devised for solving the problem at hand. Algorithmic efficiency relates

to the ability to solve a problem with a minimum number of operations or iterations. Thus,

simple explicit schemes are not generally suitable for large problems, and more complex

implicit or multigrid schemes which propagate information more rapidly throughout the

domain are preferred. A parallelizable algorithm is one which can be broken up into smaller

components and executed on a parallel architecture without incurring substantial overheads,

both in terms of reduced computational efficiency (increased number of operations to achieve

the same level of convergence) and increased communication costs. While simple explicit

schemes are often easily parallelizable, they are not efficient. On the other hand, considerable

difficulty has often been experienced in parallelizing more complex algorithms. This problem

is compounded in the case of unstructured grids, since relatively few efficient algorithms

have been devised, eveni for sequential (vector) architectures. The second software problem

is an implementation issue. Most often, the programmer is required to explicitly distribute

large arrays over multiple local processor memories, and keep track of which portions of

each array reside on which processors. In order to access a given element of a distributed

array, communication between appropriate processors must be invoked. The programmer

should be relieved of such machine dependent and architecture specific tasks. Ultimately, a

parallelizing compiler should be capable of automatically distributing data and setting up

inter-processor communication in an efficient manner, much as present-day coarse grained

shared memory supercomputers provide automated support for multi-processing. Such low-

level implementational issues have severely limited the growth of parallel computational For

applications, much in the same way as vectorized appiications were inhibited early on, prior o
to the development of efficient vectorizing compilers. 1 3

This work represents the combination of two related efforts aimed at easing the software .on

problem. On the one hand, an efficient three-dimensional unstructured solver has been devel-

oped which is highly parallelizable. The sequential version of this algorithm has previously'nL

been reported [1]. The data-structures and solution strategy (multigrid) have been designed ty OoN.
.~or
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(or chosen) with parallel overhead issues in mind. (These also have a beneficial effect on
the sequential code). On the other hand, a set of parallelization software tools (primitives)

has been developed in order to ease the task of implementing the present code on parallel
architectures. The development of a parallelizing compiler is planned which eventually will
be capable of automatically imbedding the primitives in the source code. However, at this
stage, the user is required to explicitly invoke the primitives at the appropriate locations in
the source code. While this does not provide a completely automatic parallelization tool, it
does relieve the user of the most burdensome low-level details of the implementation. The

development of these primitives, known as the PARTI primitives (Parallel Automated Run-

time Toolkit at ICASE), as well as the compiler, has been underway for some time, and has
been previously reported [2]. This paper is less concerned with the individual development of
the solver or the parallelizing primitives, but more so with the interaction between these two
efforts resulting from a specific application: the implementation of the unstructured Euler
solver on the Intel iPSC860. For example, the edge-based data-structure employed in the
solver was originally chosen in order to minimize and simplify communication between pro-
cessors. Similarly, experience gained during the implementation was used to modify various
primitives and even to create new primitives whose functionality had not been foreseen.

Parallel unstructured solver implementations have been performed in two-dimensions by
various authors, on SIMD architectures [3], and on distributed memory MIMD architec-

tures [4], [5] and [6]. Software environments for irregular problems have also been developed
and applied to two-dimensional unstructured grid solvers [51, and to two dimensional un-
structured multigrid solvers While much use has been made of the concepts developed in

previous work, new optimizations have also been devised and incorporated. This collection

of techniques has been encapsulated into a set of software primitives which provides the

interface between the parallel implementation and the sequential code.
In the next section, a brief description of the unstructured multigrid Euler solver is

given. Thereafter, a description of the general parallelization approach and of the various
optimizations is given, as well as a description of the underlying philosophy of software-
tool development. The goal of the results section is to illustrate the beneficial effects on
performance of each of the individual optimizations, and to compare the obtained perfor-

mance with that of present-day supercomputers. Finally, the solution of a large practical
unstructured grid problem is demonstrated and the parallel efficiency is compared with that

obtained on the CRAY-YMP-8 vector supercomputer.

2. THREE DIMENSIONAL MULTIGRID EULER SOLVER

The basis for the implementation is a three dimensional unstructured mesh Euler solver.
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Unstructured meshes provide a great deal of flexibility in discretizing complex domains and

offer the possibility of easily performing adaptive meshing. However, unstructured meshes

result in random data-sets and large sparse matrices, which pose a significant challenge for

parallelization issues.

The three dimensional compressible gas dynamics equations are discretized on the un-

structured mesh using a Galerkin finite-element approach [1], [71. The flow variables are

stored at the vertices of the mesh, and piecewise linear flux functions are assumed over the

individual tetrahedra of the mesh. The resulting spstially discretized equations can be recast

as a summation at each vertex of contributions along all edges meeting at that vertex. Thus,

the convective residuals may be assembled by performing a simple loop over the edges of

the mesh. Artificial dissipation terms are required in order to stabilize the solution, and

these are constructed as a blend of a Laplacian and biharmonic operator, the former being

constructed as a single loop over edges, and the latter as a double edge-loop. The spatially

discretized equations thus form a large set of coupled ordinary differential equations, which

must be integrated in time to obtain the steady-state solution. This is achieved using a

5-stage Runge-Kutta scheme. Enthalpy damping, local time-stepping, residual averaging

and an unstructured multigrid algorithm are employed to accelerate convergence to steady-

state. In the multigrid algorithm, at each cycle a single time-step is first performed on the

finest grid of the sequence and the flow variables and residuals are then interpolated up to

a coarser grid. This process continues recursively, on successively coarser grids. When the

coarsest grid is reached, the corrections are interpolated back to each successively finer grid,

and a new cycle is initiated. In the context of unstructured meshes, it has proven useful to

rely on sequences of independent non-nested coarse and fine meshes. In order to efficiently

interpolate variables between such meshes, an efficient search algorithm must be invoked in
order to determine the patterns (addresses and weights) for interpolation between any two

consecutive meshes of the sequence. This is done in a preprocessing stage, on a sequen-

tial machine, prior to the flow computations. Alternatively, this may be viewed as a mesh

generation post-processing stage. The basic data-structure for the Euler solver is based on

the mesh edges. For each edge, we store the addresses of the two vertices on either end of

the edge (similar to the coordinate-storage scheme for sparse matrices). This represents the

minimum amount of information necessary to describe the unstructured grid. It also results

in the minimum amount of data transfer between adjacent vertices within a residual eval-

uation operation, by avoiding duplicate transfers which are usually incurred by face-based

and tradi".nal finite-element cell based data-structures. For parallel implementations, this

results in the minimum amount of communication and cnab!cs a relatively simple implcilcn-

tation, since each edge can be shared by at most two processors. The multigrid interpolation
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procedures, in which the addresses and weights for interpolation have been precomputed,
can be viewed as a simple gather/scatter of data from one array (grid) to another. Such op-

erations are similar to the gather-scatter operations required on a given grid for assembling
the residuals and can therefore be implemented with existing software primitives.

3. PARALLELIZATION (PARTI) PRIMITIVES

The PARTI primitives (Parallel Automated Runtime Toolkit at ICASE) are desigrncd
to ease the implementation of computational problems on parallel architecture machines by

relieving the user of the low-level machine specific issues. The research described in this

paper began with the version of PARTI described in [81 and surveyed in this section. We

then proceeded to identify ways in which the performance of unstructured codes could be
optimized. The optimizations that involved reduction of communication overheads resulted

in an improved version of PARTI. The optimizations that involved reduction of computation

time were manually implemented.

The PARTI primitives enable the distribution and retrieval of globally indexed but ir-

regularly distributed data-sets over the numerous local processor memories. In distributed

memory machines, large data arrays need to be partitioned between local memories of pro-
cessors. These partitioned data arrays are called distributed arrays. Long term storage of
distributed array data is assigned to specific memory locations in the distributed machine.

A processor that needs to read an array element must fetch a copy of that element from the

memory of the processor in which that array element is stored. Alternately, a processor may
need to store a value in an off-processor distributed array element. Thus, each element in

a distributed array is assigned to a particular processor, and in order to be able to access
a given element of the array we must know the processor in which it resides, and its local
address in this processor's memory. We thus build a translation table which, for each array

element, lists the host processor address. For a one-dimensional array of N elements, the

translation table also contains N elements, and therefore must be distributed itself over the
local memories of the processors. This is accomplished by putting the first N/P elements
on the first processor, the second N/P elements on the second processor, etc ... , where P is

the number of processors. Thus, if we are required to access the m" element of the array,

we look up its address in the distributed translation table, which we know can be found

in the (in/P + 1)th processor. Alternatively, we could simply renumber all the vertices of

the unstructured grid in order to obtain a regular partitioning of arrays over the proces-

sors. However, the present approach can easily deal with arbitrary partitions, and should
enable a straight-forward implementation of dynamically varying partitions, which may be

encountered in the context of adaptive meshing. One of the primitives handles initializa-
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tion of distributed translation tables, and another primitive is used to access the distributed
translation tables.

PARTI carries out optimizations which reduce both the number of messages sent as well as
the volume of data that must be communicated. In distributed memory MIMD architectures,
there is typically a non-trivial communications latency or startup cost. For efficiency reasons,

information to be transmitted should be collected into relatively large messages. The cost
of fetching array elements can be reduced by precomputing what data each processor needs

to send and to receive. In irregular problems, such as solving PDEs on unstructured meshes
and sparse matrix algorithms, the communications pattern depends on the input data. This
typically arises due to some level of indirection in the code. This lack of information is
dealt with by transforming the original parallel loop into two constructs called an inspector
and executor. During program execution, the inspector examines the data references made
by a processor, and calculates what off-processor data needs to be fetched and where that

data will be stored once it is received. The executor loop then uses the information from
the inspector to implement the actual computation. The PARTI primitives can be used

directly by programmers to generate inspector/executor pairs. Each inspector produces a
communications schedule, which is essentially a pattern of communication for exchanging

data.

Significant work has gone into optimizing the gather, scatter and accumulation commu-
nication routines for the iPSC/860. During the course of developing the PARTI primitives,

we experimented with a large number of ways of writing the kernels of our communication

routines. It is not the purpose of this paper to describe these low level optimizations or their
effects in detail; we will just summarize the best communication mechanism we have found.

In all of the experimental studies reported in this paper, we use the optimized version of the

communication routine kernels.

We communicate using FORCED message types. We use non-blocking receive calls

(irecv), each processor posts all receive calls befcre it sends any data. Synchronization

messages are employed to make sure that an appropriate receive has been posted before the

relevant message is sent.

Communications contention is also reduced. We use a heuristic developed by Venkatakr-
ishnan [4] to determine the order in which each processor sends out its messages. The
motivation for this heuristic is to reduce contention by dividing the communication into
groups of messages such that within each group, each processor sends and receives at most
one message. As Venkatakrishnan points out, this heuristic makes the tacit assumption that
all messages are of equal length and in any event does not even attempt to eliminate link

contention.
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4. COMMUNICATIONS OPTIMIZATIONS

Our communication optimizations reduce the quantity of data that must be transmitted

between processors, the optimizations also reduce the number of messages that must be sent.

In our unstructured mesh solver, we encounter a variety of situations in which the same
data is accessed by several consecutive loops. For instance, consider a step of the Runge

Kutta integration. Flow variables are used in sequence of three loops over edges followed

by a loop over boundary faces. The flow variables are only updated at the end of each of

the Runge Kutta steps. \Ve can obtain all of the off-processor flow variables needed at the

beginning of the step. This makes it advantageous to develop methods that avoid bringing in

the same data more than once, these methods can also reduce the number of communication

startups.

Our new methods make it possible to track and reuse off-processor data copies. We do

this by modifying our software so that we are able to generate incremental communications

schedules. Incremental schedules obtain only those off-processor data not requested by a

given set of pre-existing schedules. The pictorial representation of an incremental schedule

is given in Figure 1. In this figure, depict a situation in which a loop over mesh edges

(edge-loop) is followed by a loop over mesh boundary faces (faceloop). The schedule to

bring in the off-processor data for the edgeloop is given by the edge schedule and is formed

first. During the formation of the schedule to bring in the off-processor data for the face-loop

we remove the duplicates shown by the shaded region in Figure 1. Removal of duplicates is

achieved by using a hash table. The off-processor data to be accessed by the edge schedule

is first hashed using a simple hash function. Next all the data to be accessed during the

face-loop is hashed. At this point the information that exists in the hash table allows us to

remove all the duplicates and form the incremental schedule.

5. REORDERING COMPUTATION

The performance of a single i860 processor on computationally important loops over mesh

edges range from 2.75 MFLOPS to 4.1 MFLOPS, in 64 bit arithmetic, depending on the

unstructured mesh used. It seems likely that this relatively poor performance is due to the

effects of irregular data access patterns on the i860 memory hierarchy. The lowest level of

i860 memory hierarchy consists of 32 integer and 32 floating point registers, each 32-bits

wide. Data stored in registers can be used directly for computation without any memory

overheads. At the next level of memory hierarchy, i860 has 8k byte data cache. The cache

line size is 128 bits and two double precision floating point numbers can be loaded from main

memory into cache simultaneously. The data stored in cache can be accessed with a delay of
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one clock cycle. In cases where data is not available in cache it is loaded from memory, which

causes a delay of several cycles. Other than possibly poor utilization of registers and cache,
highly irregular data access patterns can potentially cause severe performance degradation
due to overheads associated with the i860's mechanism for handling virtual memory. The
virtual memory of i860 is divided into 4k bytes pages. Whenever a new page is accessed, a
substantial overhead is incurred, associated with locating the page in physical memory. This
overhead can be saved if the page has recently been accessed. The details of each component

of i860 memory hierarchy can be found in [9].

The single processor performance can be improved by reordering the data and by restruc-

turing the code associated with unstructured mesh computations. Because we employ an
edge based data structure in our codes, most of the computational work in the code is found

in loops over edges so we concentrate our efforts on such loops. We investigated methods
that change the order in which mesh edges are traversed in loops. We also investigated meth-

ods which renumber mesh vertices and reorder data associated with the mesh. Reordering
edges and renumbering vertices is expected to result in better locality and therefore should

improve cache utilization and reduce virtual memory management overheads. We also in-
vestigated the effects of restructuring edge loops to use a compressed sparse row (CSR) type
representation to improve register utilization and reduce the number of memory operations.

Reordering Edges

We reorder list of edges so that all the edges incident on a node are listed consecutively.

The edges incident on node 1 are listed first, followed by edges incident on node 2 and so on.

We avoid listing and edge (ij) twice by associating it with node i, if i < j, or with node j
if j < i. The advantage of this reordering is that for all edges associated with a node i, the
data for node i remains in cache, giving a better cache utilization.

Loop Restructuring

We can restructure edge loops to use a CSR type format (10]. When we reorder edges, we

list all edges incident on a node consecutively. We can take this a step further by compressing
the data structure that represents the list of edges. An edge represents an association between

two vertices. Once we have ordered the edges in the manner described above, for each edge

(ij) we can simply generate an array IA that lists the consecutive values of j. We maintain
a separate pointer array JA. Thus IA(JA(i)),..,IA(JA(i+ 1)-i) represent the edges associated

with node i.
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Node Reordering

The numbering of mesh vertices can have an important effect on the pattern of data

access. We seek to number mesh vertices so that data associated with vertices linked by

mesh edges tend to be stored in nearby memory locations. There is no reason to expect

that mesh orderings produced by mesh generators should have this property. For instance,

Figure 2 depicts data access pattern for the 2800 node mesh shown in Figure 4. The X-axis

and the Y-axis in the figure give node numbers and each point represents an edge between

the corresponding vertices on X-axis and Y-axis.

We expect that the highly non-uniform data accesses shown in Figure 2 will cause poor

cache utilization and high virtual memory management overheads. To reduce these over-

heads, we reorder the vertices using the Reverse Cuthill McKee (RCM) method [11]. The

RCM reordering method is frequently used by researchers in the area of sparse matrix com-

putation. It is a graph based technique to reorder columns of a sparse matrix to reduce its

bandwidth. The resulting data access pattern after RCM reordering in shown in Figure 3.

In comparison to Figure 2, the data access pattern of Figure 3 shows much less irregularity

and therefore, should improve cache utilization and reduce virtual memory management

overheads.

Single Processor Results

The above reordering methods were applied to several meshes to study single node per-

formance on the iPSC/860. The results of our experimentation are summarized in Table

1. Meshes M1 and M2 are "regular" meshes which are represented using our unstructured

mesh data structures (i.e. tetrahedral meshes derived from the subdivision of a structured

hexahedral mesh), and mesh M3 is the smallest of the unstructured meshes used by the

multigrid algorithms to solve the transonic test case over the ONERA M6 wing.

Column one in the above table gives the number of vertices and identification of the

mesh used. The MFLOPS obtained without any reordering by the unstructured Euler solver

are shown in Column 2. The next four columns show the improvement in MFLOPS due

to various combinations of three reordering schemes described above. The results indicate

that edge reordering alone gives significant improvement in performance for all the meshes.

Node reordering in conjunction with edge reordering has more impact on the mesh M3 in

comparison to the two other meshes. This is probably due to the differences in the ways in

which the meshes were generated. The loop transformation does not have much impact on

performance (Column 3 v/s Column o and Column 4 v/s Column 6) because use of cache

instead of registers is not very costly. From these experimental results we conclude that
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by reordering the performance on a single node of the iPSC/860 can be improved almost

by a factor of two for the types of meshes used in unstructured applications. Since loop

restructuring was found to yield only marginal benefits, in the interest of preserving the

original structure of the sequential code, only edge reordering and node reordering were

employed in all subsequent implementations.

6. RESULTS

We describe the results of a number of experiments we have carried out to evaluate the

performance impact of our optimizations. These experiments were carried out on an Intel

iPSC/860 hypercube and the Intel Touchstone Delta. For purposes of comparison, we cite

performance numbers obtained from an optimized Cray YMP version of this code [1].

A standard transonic test case is chosen for this comparison, namely a Mach 0.84 flow

over an ONERA M6 wing at 3.06 degrees incidence. The sequence of meshes employed for

the multigrid algorithm in this case are depicteu in Figure 4. The coarsest grid contains

merely 2,800 vertices, while the finest grid contains a total of 357,900 vertices and just

over 2 million tetrahedra. The intermediate grids have 9,428 vertices and 53,961 vertices

respectively. The computed Mach contours of the obtained solution are depicted in Figuie

5, where the familiar double-shock pattern is observed.

We employ a single grid algorithm along with two versions of multigrid algorithms. The
two versions of multigrid are W and V-cycle algorithms. The V-cycle multigrid algorithm

visits all meshes an equal number of times within a single cycle, while the W-cycle visits

coarse meshes more frequently than fine meshes. Details of these algorithms can be found in

[1]. W-cycle multigrid strategies require slightly more work per cycle (of the order of 15% to

25% depending on mesh sizes), but often converge slightly more rapidly and are thus more

efficient overall. However, the relative merits of W versus V-cycle strategies can be very

case dependent. On the other hand, both strategies always offer large increases in efficiency

over single grid explicit methods. Figure 6 provides a performance comparison between the

single grid and W-cycle multigrid code by plotting convergence histories in terms of work

units for the solution of flow over the ONERA M6 wing at the above prescribed conditions

on the 357K mesh. In this plot, a work unit is defined as the time required for a single grid

explicit cycle. As can be seen in this figure, the W-cycle multigrid algorithm converges over

6 orders of magnitude in roughly 150 work units, which corresponds to 100 multigrid cycles,

while the single grid calculation is seen to require almost an order of magnitude more work

to reach the same level of convergence.

On the CRAY-YMP, the single-grid code for this case required a total of 33MW of

memory and ran at a speed of 19 seconds/cycle on a single processor. The W-cycle multigrid
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code required a total of 42 MW of memory and ran at a speed of 34 seconds/multigrid cycle.
For both cases, the computational rates achieved were about 100 Mflops. For the multigrid
run, engineering solutions (3 to 4 orders of convergence) for this case could thus be obtained
in roughly 30 minutes of CRAY-YMP single processor CPU time.

We employed the recursive spectral partitioning algorithm to carry out partitioning

[12], [13]. Williams [14] compared this algorithm with binary dissection [15] and simu-
lated annealing methods for partitioning two dimensional unstructured mesh calculations.

He found that recursive spectral partitioning produced better partitions than binary dissec-
tion. Simulated annealing in some cases produced better partitions but the overhead for
simulated annealing proved to be prohibitive even for the relatively small meshes employed
(the largest had 5772 elements). Venkatakrishnan [4] and Simon [13] also reported favorable

results with this partitioner. We carried out preliminary performance comparisons between
binary dissection and the recursive spectral partitioning and found that recursive spectral
partitioniig gave superior results on the iPSC/860 on our three dimensional meshes. The

results we report all have been obtained using recursive spectral partitioning to partition
all meshes. Partitioning was performed on a sequential machine as a preprocessing opera-
tion. In all of the experimental studies reported in this paper, we use the same optimized
version of the communications kernels which employed forced message types, non-blocking

receives (irecv), and which employ Venkatakrishnan's heuristic to determine the order in
which messages are sent.

Table 2 examines the effects of the communication optimizations and the reord2ring

optimizations. The table depicts the Mflops obtained with the single grid, and the W and V
cycle multigrid algorithms on a 357K node fine mesh. The figure also depicts the performance

of the single grid method on the second finest grid (53,961 vertices). Measurements were
performed on a 128 processor Intel iPSC/860. We achieve roughly a factor of 2.5 to 3

improvement in computational rate from the use of our optimizations. For instance, consider

the single mesh code on the 357K mesh. When we employed both optimizations, we saw a

computational rate of 356 Mflops. Communications optimizations without reordering yielded

217 Mflops, reordering without communications optimizations yielded 149 Mflops. When we
employed neither optimization, we achieved 127Mflops. Analogous improvements are seen

in the multigrid codes.
The multigrid V and W cycle algorithms achieved 298 and 244 Mflops respectively when

we employed both communication optimizations and reordering. The frequent visits to coarse

meshes, interpolation and prolongation in W cycle multigrid might be expected to lead to
a significant degradation in computational rate. A degradation of roughly 32% compared
to the single grid code was in fact observed, but substantially larger degradations are seen
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when we leave out either our communication optimizations or reordering.
Table 3 gives information on the effects of the different optimizations on communication

and computation time. For the single mesh code, use of the communications optimizations

lead to a fourfold reduction in time spent on communication. For the W cycle multigrid, we

have broken down communication time into

communication time required to carry out calculations on one of the four individual
meshes in the multigrid calculation (intra-mesh communication in Table 3), and

communication time required for transferring data between meshes (inter-mesh com-

munication Table 3).

We note that the cost of carrying out intra-mesh communication is over an order of magnitude
higher than the cost of carrying out inter-mesh communication. This indicates that we do not
appear to be making a significant performance compromise by independently partitioning
the meshes in the multigrid algorithms.

The final test case involves the computation of a highly resolved flow over a three-
dimensional aircraft configuration. We employed the single mesh code for this test case,

although plan soon to run the multigrid case. The mesh contains a total of 804,056 points
and approximately 4.5 million tetrahedra. This is believed to be the largest unstructured
grid problem attempted to date. In Figure 7, we depict the second mesh of the proposed

multigrid sequence (we do not show the 804K mesh due to printing and resolution limita-
tions). For this case, the freestream Mach number is 0.768 and the incidence is 1.16 degrees.
The computed Mach contours are shown in Figure 8, where good resolution of the shock
on the wing is observed. This case achieved a rate of 778 Mflops on 256 processors of the

Delta machine, and 1496 Mflops on the full 512 processor configuration of the Delta. The
same case was run on the CRAY-YMP-8 machine, using all eight processors in dedicated

mode. The CRAY autotasking software was used to parallelize the code for this architecture.
Both the single grid and multigrid codes achieved a computational rate of 750 Mflops on
all eight processors, which corresponds to a speedup of roughly 7.5 over the single processor
performance. A residual reduction of six orders of magnitude was obtained in 100 multigrid

W-cycles which required 16 minutes on the full CRAY-YMP-8. Although the computational

rate achieved on 512 processors of the Delta machine is roughly double of that delivered by
the CRAY-YMP-8, a degradation of about 30% can be expected with the implementation
of the multigrid W-cycle on the Delta for this case, as was observed for the previous case.

Thus, a similar solution-should be achievable on the Delta in just under 10 minutes.
In' Table 4 we depict the computational rates achieved on different architectures for the

single mesh solution procedure, along with V and W cycle multigrid solution procedures,
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for the two cases previously described. We employed all of our optimizations in these tests.

As expected, for the CB AY-YMP, single processor rates are relatively insensitive to the

problem size and the solution strategy. On the iPSC/860 and the Delta the computational

rates are calculated by counting the number of floating point operations performed. On

the CRAY-YMP, the system facility called hpm was utilized to measure the rates. If we

scale the computational rate given by the CRAY-YMP facility, to get the rate for the Intel

machine, the scaling factor being the ratio of the time per cycle on the CRAY-YMP to

the corresponding value on the Intel machine, we find the rate is about an average of 40

Mflops more than that presented for the iPSC/860 and the Delta. On the iPSC/860 and the

Delta architectures, maximum computational efficiency is achieved for large meshes using

the single grid solution strategy. Thus the single grid run of the 804K grid on 512 Delta

processors achieves twice the computational rate of the CRAY-YMP-8, or 15 times the

rate of a single CRAY-YMP processor. Similarly, the 357K mesh achieved about 7 times the

performance of a single CRAY-YMP processor for a single grid run, (roughly equivalent to the

full CRAY-YMP-8 performance) and 4 times the single processor CRAY-YMP performance

for a W-cycle multigrid run (or about 60% of the CRAY-YMP-8 performance). Since the

overall solution efficiency of the multigrid strategy is much higher than that of the single

grid explicit scheme, this emphasizes the need to use overall solution time as a measure of

solution efficiency rather than simply computational rates.

7. CONCLUSIONS

A number of earlier reports have noted that two dimensional, explicit unstructured mesh

solvers appear to be well suited for distributed memory multiprocessors. While explicit

schemes may be easily parallelizable, they are not numerically efficient. We have developed

a distributed memory version of an efficient three dimensional unstructured multigrid code.

We have shown that competitive computational rates can be achieved for this problem on

massively parallel distributed memory architectures. An approximately three-fold perfor-

mance improvement was obtained by optimizations which reduced communication overhead

and increased the computation time required by the processors.

The encapsulation of the communications optimizations into a set of software primitives

eases the implementation of similar problems and the porting to different architectures, while

providing the foundations for possible run-time compilation support of parallelization [8].

The simultaneous use of an efficient multigrid algorithm and massive parallelism results in

rapid solution times for large problems.

Our approach is designed to facilitate the development of parallelized adaptive meshing

strategies. The PARTI primitives currently support problem remapping but do not as yet

12
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support the functionality that will be required for the process of adaptive remeshing itself.

Once this functionality is developed, we will be able to implement adaptive three dimensional

multigrid codes on distributed architectures.
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Mesh Original Edge Reordering Loop Restructuring
size Original Node Original Node

Node Ordering reordering Node Ordering reordering

545(M1) 4.03 5.90 6.15 6.53 6.74

3681(M2) 4.09 6.13 6.27 6.42 6.74

2800(M3) 2.76 4.28 5.42 4.35 5.76

Table 1: Performance of reordering on single node of iPSC/860 in Mflops

Method Explicit Explicit Multigrid Multigrid
53K Mesh 357K Mesh 357K Mesh 357K Mesh

V Cycle W Cycle

No Communication Opt. 85 127 105 92
Original Mesh Ordering

No Communication Opt. 88 149 120 100

Reordered Mesh

Communication Opt. 172 217 181 153
Original Mesh Ordering

Communication Opt. 216 356 298 244
Reordered Mesh

Table 2: Performance in Mflops of Unstructured Mesh Code on 128 Processor iPSC/860
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Method Explicit Multigrid W Cycle
comm total comm total

intra-mesh inter-mesh

No Communication Opt. 7.6 14.1 30.1 1.7 40.1
Original Mesh Ordering

No Communication Opt. 7.6 12.0 29.4 1.6 35.8
Reordered Mesh

Communication Opt. 1.8 8.2 9.6 0.5 22.7
Original Mesh Ordering

Communication Opt. 1.8 5.0 9.4 0.4 14.6
Reordered Mesh

Table 3: Communication, Total Time per Cycle (seconds). Unstructured Mesh Code 128
Processor iPSC/860 357K MesA

Method Explicit Multigrid Multigrid
357K Mesh 357K Mesh 357K Mesh

V Cycle W Cycle
128 Processor 356 298 244
iPSC/860

128 Processor 408 320 267
Delta

256 processor 646 516 412
Delta

1 Processor 103 100 100
Y/MP III _ I

Table 4: Computational Rates (Mflops) Unstructured Mesh Code iPSC/860 and Delta.
Incremental Scheduling, Blocked and Reordered Mesh
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INCREMENTAL SCHEDULE
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IN SWEEP OVER EDGES

OFF PROCESSOR FETCHES
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INCREMENTAL
SCHEDULE

DUPLICATES/
EDGE SCHEDULE

Figure 1: Incremental Schedule
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Figure 2: Initial Data Access Pattern of 2800 Node Mesh
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Figure 3: Data Access Pattern of 2800 Node Mesh After RCM Reordering
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411

Mesh 1 Mesh 2

Mesh 3

Figure 4: Sequence of Global Coarse and Fine Meshes Employed for Computing Inviscid

Transonic Flow over the ONERA M6 Wing. Mesh 1: 2,800 Nodes, 13.576 Tetrahedra, 2,004

Boundary Faces; Mesh 2: 9,428 Nodes, 47,504 Tetrahedra, 5,864 Boundary Faces; Mesh 3:

53,961 Nodes, 287,962 Tetrahedra, 23,108 Boundary Faces; Mesh 4: 357,900 Nodes, 2,000,034

Tetrahedra, 91,882 Boundary Faces (Not Shown).
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I)

Figure 5: Computed Mach Contours on the Second Finest Mesh of the Multigrid
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Figure 6: Comparison of the Multigrid Convergence Rate and the Single Grid Converge Rate
on the Finest Grid of the Sequence about the ONERA M6 wing as Measured by the Average
Density Residuals versus the Number of Work Units
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Figure 7: Coarse Unstructured Mesh about an Aircraft Configuration with Single Nacelle;
Number of Points = 106,064, Number of Tetrahedra = 575,986 (Finesh Mesh Not Shown)
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Figure 8: Mach Contours for Flow over Aircraft Configuration Computed on Fine Mesh of
804,056 Vertices and 4.5 million Tetrahedra (Mach = 0.768. Incid ence = 1.116 degrees)
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